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SUMMARY

High Rayleigh number convection in a rectangular cavity with insulated
horizontal surfaces and differentially heated vertical walls has been analyzed
for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous
analytical studies, a systematic method of solution based on linearization
technique and analytical iteration procedure has been developed to obtain
approximate closed-form solutions for a wide range of aspect ratios. The pre-
dicted velocity and temperature fields are shown to be in excellent agreement
with available experimental and numerical data.

INTRODUCTION

It has long been recognized that the growth of crystals is affected by
the fluid dynamics and heat transport characteristics of the process. The flow
caused by natural convection has profound influence on the interface shape,
defect density, and crystal integrity. As pointed out by Ostrach (ref. 1),
high Rayleigh number natural convection flows could still exist under typical
conditions in a reduced gravity environment, thereby influencing the growth of
crystals. It is, therefore, important to understand the detailed mechanism of
convection and flow behavior in order to produce high quality crystals in both
ground- and space-based systems.

A configuration containing all the essential physics describing the gen-
eral flow behavior and transport processes related to crystal growth techniques
is that of a rectangular enclosure heated from the side (ref. 2). It is impor-
tant to note that a central problem inherent to all confined convection situa-~
tions is that the outer (core) flow region can not be predicted a priori and
depends on the boundary layer which, in turn, is influenced by the core
(ref. 3). This coupling of the boundary layer and the core region constitutes
the main source of difficulty in studying the flow behavior. This matter is
not merely a subtlety for analysis but has equal significance for numerical
and experimental studies. Because of the complex nature of the problem, numer-
ical and experimental studies must be performed with a high degree of accu-
racy. Often a prior knowledge of flow behavior such as the extent of boundary
layers or location of secondary cells can improve the numerical and experimen-
tal studies by allowing the choice of proper mesh sizes and finer measurement
techniques. It is therefore apparent that an analytical treatment of this
problem, in particular for high Rayleigh number cases where the boundary layers
develop, is of considerable importance. Such a treatment (especially if a
closed-form solution can be obtained) could greatly enhance the understanding
and predict the underlying physics of the problem. However, as stated by
Ostrach (ref. 3), most available analytical studies contain unrealistic assump-
tions and estimates regarding the core configuration which result in solutions



with limited or undefined validity. Moreover, because of special assumptions
used in analyzing each particular problem, there seems to be a lack of cohe-
siveness and systematic approach in treating this type of problem.

Tichy (ref. 4) presents a brief summary of recent work done on high
Rayleigh number convection in low aspect ratio cavities. He, himself, obtained
analytical-numerical solutions for the lTow aspect ratio enclosures. Unlike
most of the previous analytical studies which concentrate on the prediction of
an average Nusselt number, Tichy's work deals with the considerably more com-
plex task of determining the detailed behavior of the flow and temperature
fields. He assumes nearly parallel core flow with an aspect ratio e << 1.

His predicted velocities agree reasonably well near centerline regions. 1In
regions away from the centerline, the velocities become less accurate and the
no-slip condition on vertical walls is no Tonger satisfied. Results of other
recent investigations include velocity field prediction for e = 1 by Reddy

et al. (ref. 5) for which they use a numerical penalty finite element method

of calculation, and the recent work by Kamotani et al. (ref. 6) in which exper-
imental data for Nusselt numbers are obtained for a wide range of important
parameters.

To the best of the author's knowledge there has not yet been an analytical
investigation for high Rayleigh number natural convection flows for an arbi-
trary aspect ratio (0 < e < 1>. Most of the reported work has been done on
very low aspect ratio enclosures and only a few of these studies are concerned
with prediction of velocity fields. Moreover, as mentioned earlier, these con-
tain many ad hoc assumptions concerning the nature of the core flow, thereby
limiting the validity of solutions. It is the purpose of this study to develop
an approximate but systematic analytical method of solution predicting the
velocity and temperature distributions in a rectangular cavity with arbitrary
aspect ratio 0 < ¢ < 1 for the boundary layer region where the Rayleigh
number Ra >> 1.

In the following analysis a combination of a linearizing method and an
analytical iteration procedure is used to obtain approximate closed-form solu-
tions to the problem. Analytical iteration is a useful technique which does
not appear to have been fully utilized in fluid mechanics problems such as the -
present one (ref. 7). MWhen iteration is used in conjuction with another
approximate procedure such as a linearization performed on the governing equa-
tions, it leads to a powerful but straightforward technique for obtaining
approximate, often closed-form, solutions to the problem. This report shows
that the solutions obtained for this rather complex problem are in excellent
agreement with existing experimental and numerical data.
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Nu

NUr
Pr

Ra

b = Pr_]

acceleration due to gravity

3
Grashof number, Gr = @9—%Iﬂ—

v
height of cavity
width of cavity

0 = -8.31¢ 'gr /2

M(y) = 0.137y + m
Nusselt number, (eq. (71))

Nusselt number referred to in other studies
Prandtl number, Pr = g}

Rayleigh number, Ra = Pr e Gr

a
S=-3
temperature

temperature of the cold wall

temperature of the hot wall

1
Ty = 5Ty + T
AT = Ty - T,

dimensionless horizontal velocity
dimensionless vertical velocity

horizontal coordinate

>

dimensionless horizontal coordinate, x

vertical coordinate

i<

dimensionless vertical coordinate, y =

thermal diffusivity



B B =4l.2ne a8
A boundary-layer thickness for a vertical plate
8 boundary-layer thickness
€ aspect ratio, e = %
T - TO
5] dimensionless temperature, 6 = AT
“1/s -1/25>
xl xl = Zs(e -e
) L. b3/4Gr']/4
8m3
v kinematic viscosity
¥ stream function, (eq. (3))
¥ dimensionless stream function, ¢ = L

¥R

¥p reference stream function, yp = wer™ /2

Superscripts:

* stretched coordinates
B boundary layer
C core

CB core boundary layer

cC core core

1 first order approximate solutions
2 second order approximate solutions
Subscripts:

t thermal boundary layer thickness

1 unit order variables



MATHEMATICAL FORMULATION

Figure 1 shows a schematic diagram of the physical system. The length of
the rectangular cavity is assumed to be much Targer than the height and the
width so that the problem is two-dimensional. The top and bottom surfaces are
thermally insulated and the left and right walls are maintained at isothermal
hot and cold temperatures respectively. The flow field is assumed to be steady,
laminar, and quasi-incompressible. By quasi-incompressibilty it is meant that
the variation in density due to temperature differences are neglected except
where they modify the body force term in the momentum equation. This is gener-
ally referred to as Boussinesq approximation and has been discussed in a formal
way in reference 8.

The stream-function form of governing equations are

4 4 4
4 3y 2 3y 3 w] o2 2
Vi€ it 2¢ 5 5+ ay4J = -¥p s[wx(e Yoy * wyy)y

ax ax-ay
S R + egB ATHY ()
y XX AAN X
and
2 (% vo |=-y6, +y0 (2)
e¥p XX yy X"y yx
where the stream function is defined by
_ 9y _ _ 9y
u = ay V=T (3)

The pressure term has been eliminated by cross-differentiation of the momentum
equations.

The above equations are also nondimensionalized by use of the following
variables:

T-T,
AT ¥

H
0 - e =T 4)

Notice that the reference stream function ¥R is left unspecified and will be

determined by a proper force balance as appropriate to the problem. For

Gr >> 1, Pr ~ 1 the correct force balance is obtained by equating the coeffi-
cient of inertia and buoyancy terms in the vorticity equation (refs. 9 and 10).
This yields to the proper characteristic stream function given by

¥ = v/Gr (5)

By substituting equation (5) into equations (1) and (2) the final form of the
system of equations to be solved becomes
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E_(e Yaxux * 28 ¥axyy * wyyyy) = _‘Px<e Yxxy ¥ lPyyy) * q'y(e ¥xxx * wxyy) + 9y
(6)
ab [ 2 -
: (e o, + eyy) - 0y + 4,0, (7
where
- Gr-]/Z
and
b = pr™!
The boundary conditions are
vp=¢, =0 at x=1% %
Sy, =0 at y=+1
Y=y y=1t5
(8)
6=+ at x =71
=t3 =t 3
6 =0 at y=+1
y~ =12

NORMALIZED BOUNDARY LAYER EQUATIONS

The normalized boundary-layer equations are derived by properly balancing
forces within the regions where they act. For Prandtl numbers larger than or
equal to unity, the thermal boundary-layer thickness is smaller than, or at
most equal to, the momentum boundary-layer thickness. 1In this case viscous
and bouyant forces can then be assumed to be of the same order of magnitude
within the thermal boundary-layer region (refs. 11 and 12). Stretching the
coordinate normal to the vertical wall and expanding 5 and g in asymptotic

series (ref. 9) gives

1
* X + 7
X=62 (9
t
B B
o= By o+ 10
B B
6 =6, +. .. an

Substituting into general equations (6) and (7) and equating the coefficients
of convective and conductive terms as well as viscous and buoyancy terms deter-
mine the unknown parameters st and £
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5, = eRa” /Y < op! /412 (12)
E] - Pr—3/4Gr—1/4 - b3/4a1/2 (13)
and the boundary-layer equations given by
0 b o o o g g (14)
Yieesr = O WiaWyian = W9 Winwse| + *
]xxxx ] 1xxy 1y ]xxx ]x
and
SN A (15)
*k = ~Wia + ¥ *
]xx ]x ly ly ]x
The outer flow region or core equations are obtained by letting a » 0 in
equations (6) and (7). This gives
C 2C C C 2C C C
¥, | € wxxy + wyyy - wy € Wyyy * nyy = eX (16)
ccC cc
wxe wye =0 | an

The system of equations (6) and (7) has now been broken into the boundary-
layer and core equations (14) to (17). An analytical iterative technique is
used to find approximate solutions which satisfy equations (14) to (17). It
is important to note that in an iterative process the accuracy of the solution
depends on the number of iterations; therefore, if a limited number of itera-
tions are desired, the choice of the initial profiles becomes very important.
Consequently, if the initial profile is chosen so that it is most compatible
with the particular assumptions and physics of the problem then the resulting
solution will be satisfactory after only a few iterations. In the present
problem the highest temperature changes occur within the thermal boundary-
layer region near the vertical walls. Therefore the buoyant forces are very
strong within that region, whereas in the core region the bouyant forces are
weak because of the absence of sharp temperature gradients. Since the buoy-
ancy is the main driving force here, it is important to choose an initial pro-
file such that the change of buoyancy in the x-direction is accounted for.
Accordingly we let

] 4 2
y = C](x)(16y -8y  + 1) (18

3

= D.(x) + D ~ 3y) (19)

0 ](x)(4y

These profiles satisfy the horizontal wall conditions at y = + 1/2. Substi-
tutlng equations (18) and (19) into equations (14) to (17) yields the follow-
ing equations:



B I

Bllll
6y* - 8y + 1) = b1/ 26112 {—[C](Iﬁy

4
¢

—3/4Gr1/4

b - 8y + 1>]

BII 3 B 3 Blll 4 2 BI Bl 3
16C, (4y° - )| + |16C,(ay” = y| € (A6y" - 8yS +D|( + Dy + D;(dy” - 3y)
(20)

B! B! B! B
D, + Dy 4y’ - 3y) = p~3/4g,1/4 {—{C](l6y4 -8y’ + 1>} [301(4y2 - 1)]

B B' B
+ [16C,<4y” -y)| [Dy + D,(4y” - 3y 21)

and
c c C c
[c]<15y4 - 8y% 1)} [1652C] @y3 -y . 384C]y] - [16C](4y3 - y)]

c'"! 4 ) ok > ok ok 3
C] (16y " - 8y + 1) + 16C](12y - ] = DO + D](4y - 3y) (22)

a2 C 2 ¢ 3 ¢t Cg
C](16y -8y + 1) 301(4y - D = 16C](4y -y D0 + D](4y - 3y

(23)

Note, that based on the discussion presented above, the functions Cj(x),
Do(x), and Dj(x) have been broken into boundary-layer and core contributions,
thus accounting for varied buoyant action in the x-direction. Assuming the
existence of an overlap region wherein both the core and the boundary-layer
expansions remain valid, the following matching conditions must hold (see

ref. 9):

1B 1C
O =8, 4 112
X
1B 1C
Yo =¥ 172
X >0
18 1C
Walx =¥y > 172 (24)
X | X

In order to solve the nonlinear and coupled boundary-layer and core equations
(eqs. (20) to (23)), the following boundary-layer profiles, which satisfy the
left wall conditions, are assumed:



B * * *
C, - Mb3/4Gr°]/4[1 . (sin mX ~ COS mx) eme (25)
B .t
D0 = % cosS mxemX (26)
B ,
D, = L (1 - cos mxemx) Qn

An identical procedure can be used for the right wall.

The above functional forms are systematically predicted by utilizing the
wall conditions, along with a Tinearized solution to the nonlinear equations.
(See ref. 9 for a detailed description of "the modified Oseen linearization
technique.") The unknown constants are determined by requiring the assumed
profites (18) and (19) to satisfy the integral form of governing equations in
the y-direction and across the vertical boundary layer. The core region in
the x-direction satisfies the core equations (16) and (17) exactly. The core
and boundary-layer stream function and temperature are then

]B 3/4 -]/4 * * *
¢ = 9--5%h———{1 . (sin mX - cos mx) e""‘}my2 - n? (28)
8m
1By 4 * x| 3
0 = e - 1.78m" {1 - cos mxe (4y” - 3y) (29)
1C ,3/4..-1/4
v o= T ay? - 1P (30
8m
Ic 4, 3
o = -1.78m%4y° - 3y) a1

where m s an unknown constant to be determined later. The total stream
function and temperature can be constructed by using the composition rule
(ref. 13). MWe then obtain

1 3/4. -1/4 " * *
Y = 9———§£§——— [1 + (sin mx - cOS mx) emx](4y2 - 1)2 (32)
am
] * N *
0 = % e™ _1.78 m4 1 - cos mxe™ (4y3 - 3y) (33)

To estimate m, the boundary-layer equation (14) is integrated

* *
from x = 0 to x = A/8 at y = 0. The boundary-layer thickness A at
y = 0 is taken to be the same as the boundary-Tayer thickness on a flat plate
at that location, (ref. 14); this yields

m = -0.56 (34)
9




Equations (28) to (33) are approximate solutions satisfying the boundary condi-
tions on the walls and the integral form of governing equations. Although it
is not shown here (for brevity), the above solutions predict the average
Nusselt number and temperature field in good agreement with numerical and
experimental data. Because of the averaged nature of the first approximation,
however, the velocity fields are only in qualitative agreement with experimen-
tal and numerical data. Therefore it seems reasonable that a refinement of
solutions through an analytical iterative process should yield solutions in
full agreement with existing studies. This is indeed the case as will be seen
by comparing the iterated solutions to available data. (See section Results
and Discussion.)

By proceeding in the same manner as explained in reference 7, the approxi-
mate results obtained for the core stream function and temperature (eqgs. (30)
and (31)) are utilized in the original vorticity equation to obtain a more

1C 1C
accurate core solution. The core variables ¢ and © obtained previously
2C 2C
are a function of y only. Therefore, the new core variables ¢ and ©

1C 1C
can be expected to deviate only by a small margin from ¢ and © . Hence

the new variables must satisfy the condition

2C 2C 2C 2C
oy v 36 _ 96_
3x << 3y and 3x << 3y (35

Using condition (35) in the original vorticity equation (6) results in the
general core vorticity equation

C 2C 2C 2C 2C 2C

2
Yyyyy * ¥ ¥ yyy T ¥y Yxyy = Sx (36

[ [-T]

The core temperature obtained in the first approximation is now substituted in
the right-hand side of equation (36) to yield

, 2C 2C 2C 2C 2C
e Pyyyy * ¥x Yyyy T ¥y Fayy = 0 (31
2C _
Assuming ¢y = XOOY(y), we obtain
X =9 (38)
and
ay'"""le ey Y'Y = o0 (39)

Note that equation (39) has boundary-layer characteristics (i.e., as a + 0
the highest derivative term vanishes); hence all boundary conditions on hori-
zontal walls cannot be satisfied. -Equation (39) can therefore be broken up
into core and boundary-layer equations

cc cCr+  CCCCry

Y Y -Y Y 0 (40)
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and

4CB g 3CB CB 2CB
dy y &Y _dv dv

*4 + *3 - " *2 = (4])
dy dy dy dy

*
where y is the usual stretched coordinate

1
7 =Y

*
y = = for yzo0 (42)

v

and superscripts "CB" and "CC" refer to "core boundary layer" and "core
core" respectively. The parameter s 1is defined

a
S = - oL (43)

Omitting the details, it can be shown that equation (40) has an approximate
solution which is

cc 5
Yy 2AYT + A+ Ag (44)

The solution to the core boundary-layer equation (41) can be obtained by using
an integral method, which is customary for finding approximate solutions to
boundary-layer equations. A suitable profile that satisfies the horizontal

wall conditions is given by
CB *\2
y =cl1-e”Y (45)

where C 1is a constant to be determined later. The profile equation (45)
will later be forced to satisfy the integral form of equation (41). For the
core stream functions we obtain

. CB *)2
y = Cax + D{1 - e (46)

cC 9
y = (X + 1)(A]y + A2y + A3) 47)

Equations (46) and (47) must match at an intermediate region (ref. 13) as

follows
CB cC )
p @) =y X,y (48)

CB cc/
g (X, @) =y X,3 (49)

y y



The composition rule for stream functions gives

c ¢B CC CB
g=y +y -y (x,) (50)

Therefore the total core stream function is

2 A
g o=Clx+ D1 -e ] ey (51)

where x] is a constant to be determined. It is now necessary to satisfy the

CB
core boundary-layer equation (41) by ¢ on an integral basis. In addition,
the "centro-symmetry" property (ref. 10) requires that

2C
wy(0,0) =0 (52)

2C
In the same manner as Collatz (ref. 7), the value of at x = 0 and

1C
y = 0 will be set equal to the value of ¢y at x =0 and y = 0. The above
constraints are sufficient to determine all constants in equation (51). These

are
X - 2S(e-l/s _ e—1/25)
where
s = 0.12
3/4. -1/4
and C=Ap=? oA (53)
8m
where

|

! |
[(1 ; e‘]/zs) . x]<1/2s)2]

From relation (43), the parameter 2 is

A =

(54

Therefore when Gr >> 1, and Ofx| < 1/2, ex 1is negligible with respect to

unity, and we obtain
2 M
¢ = Aujil - e + Ny (55)
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A more accurate boundary-layer velocity can now be obtained by modifying
1B
the boundary-iayer solution ¢ of equation (28) to satisfy the asymptotic

2C
matching condition with the new core stream function ¢  of equation (55);
that is, let

2B * ] Myro _y ‘ %2
¢y = Au <1+ sin[(M(y)x] - €OS [M(y)x] e 1 -e + x]y (56)

where the parameter M is an unknown function of y to be specified later.
Note that the core-boundary-layer velocity matchings are satisfied; that is

28 2/
y (=9 =y |- 3.y (57)
and
28 2¢(
Y (=.9) =90~ 7.y (58)
X

2B
Also note that ¢ satisfies the horizontal wall conditions. Assuming the

28
simplest linear profile for M(y) and requiring that ¢ is satisfied by the
integral form of the boundary-layer energy equation (15) yields

M(y) = 0.137y + m (59)

Again, using the composite rule for determining the total stream function, we
obtain

.- A {1 ‘ [sin[(0.137y + mx] - cos [€0.137y + m);]}

* «\2 %2
e(0.137y + m)x} 1 - e_y + x]y (60)

from which the velocities can be derived

2 . .
- Ap‘{_ 200137y e m ;. [(0_]37y . m)x} L€0.137y + m x}

St
2
-y x2
1 -e + x]y (61)




* *
- - §5H~{1 . [sin[<o.137y + mx] - cos [(0.137y + m)xJ}

* _; 2; * * *
e(0.137y +mx(le” - e’ + k]y + 0.274Au<{ x sin[(0.137y + m)x]

% *2 *2
0137y + mx ol -y | ALY (62)

In a similar manner, a better approximation can be obtained for the core

2C
temperature. The new temperature © must satisfy the general core energy
equation given by

ex - ¥, 0 (63)

2C
Because of horizontal wall conditions imposed on © , it must be of the form

2C
& = g(y) + f(x) (64)

Substituting equation (64) into equation (63) yields

* 2 2 '
q_b (] 1 _y *
: J (y) = £ OCOJAufil - e + x1y (65)
This necessitates that,

f'(x) = const. = B (66)

and hence

«\2 .2
By paul\1 - e ey (67)

Using the horizontal wall condition and employing the central symmetry property

2C .
8 (0,0) = 0 yield

2 pupes [ ¢ -y 1 2y N3
0 = —EEE_ -y -2 e e™Y =y 4 B+ B (68)
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1
Guided by the boundary-layer solution for 6, we let

éB -1 em; [l cos(m;)em;}[A Bes (—* 2e'; 1 eZ; }l 53 B) @]
=3 S A ab 7Y~ ) -3 Y B3
(69)

. . e 2

where the core-boundary-layer matching conditions are satisfied for 6.

By the composition principle, the total temperature is constructed and
reads

*

* 3
%* * *
e™ [1 - cos(mx)emx}[ﬂgggi (-y - 207, % e 2y _ gl y o+ B)

- %—J + B(x + %) (70

Defining the average dimensionless heat transfer coefficient at the wall by

2
1
0 = 7

1/2
Nu = J ex dy (71)
y==1/2 X=-1/2
we then obtain
NU = (1 +B) (72)

- 28

The reference Nusselt number used for comparison purposes can be shown to be
related to Nu by

Nupr = eNu (73)
and hence

me_
Nur = 5¢ (1 + 3 (74)

2C 1C
To obtain an estimate for [, we require that 6y and Oy be of the same
order of magnitude in the 0 =y = 1/2 range (see ref. 7); that is,

1/2 2c 1/2 I
oy dy = Oy dy (75
y=0 y=0
This gives
7,.-1/4
B = 41.2m Ra (76)

€

15



With determination of the parameter B3, the solution to the problem is
complete. The approximate, closed-form solutions derived for the velocity and
temperature fields now can be used conveniently to obtain detailed information
about the flow behavior and heat transfer characteristics of the problem. In
the next section the present solutions are carefully examined and comparisons
to existing experimental and numerical data are made.

RESULTS AND DISCUSSION

In order to test the validity and accuracy of the solutions, a number of
cases were calculated to enable a comparison with established experimental and
numerical results of other investigations.

The vertical and horizontal velocities as given by equations (61) and
(62) have been plotted and compared to several existing numerical and experi-
mental data for different values of the aspect ratio.

Figure 2 shows a plot of the end vertical velocity profiles for
Ra = 3x108, Pr =1, ¢ = 0.1, and y = +0.179. The present solution in both
the y = +0.179 and y = -0.179 regions agrees very well with numerical data.
The fact that Tichy's analytical solution does not satisfy the no-slip condi-
tions at vertical walls except at y = 0 s partially responsible for a less
quantitative agreement between his analytical and numerical solutions. Note
that in the present study all wall conditions are satisfied.

Figure 3 compares the present analytical solutions of mid-core velocities
with Tichy's numerical solutions (ref. 4). The agreement is good for all
velocities. It is especially important to note that the horizontal boundary-
layer character of the flow for very large values of Rayleigh numbers is
evident both in numerical and analytical solutions. Because of the centro-
symmetric property, only the top part of velocities are drawn. The Rayleigh
number ranges from 107 to 109 with Pr =1 and e = 0.1.

In figure 4 the vertical velocity along the centerline of the enclosure
is plotted and compared with numerical data of reference 5 which were obtained
by using a penalty finite element method. There is good agreement through the
entire region. In this case Ra = 109, Pr = 1, and the aspect ratio e is
equal to unity (i.e., a square cavity). This, once again, emphasizes the wide
range of applicability of the present solution.

The average wall Nusselt number is plotted in figure 5. At very high
Rayleigh numbers, Ra ~ 109, the average heat transfer coefficient is practi-
cally independent of the aspect ratio e. For moderately high Rayleigh numbers
of Ra < 109 the impact of the aspect ratio e becomes more obvious however,
and results in a splitting of the Nusselt number curves which correspond to
Tow aspect ratio enclosures and enclosures with aspect ratios near unity. The
recent experiments by Kamotani, et al. (ref. 6) clearly support the current
predictions.

Figure 6 shows plots of the core temperature measured at three different
x-locations and for the low aspect ratio of e = 0.0625 (ref. 6). The solid
line is the core temperature distribution derived in the present analysis.
There is good agreement between the analytical and experimental temperature
fields.

16



CONCLUSIONS

The problem of high Rayleigh number natural convection for arbitrary
aspect ratio, 0 < e =1, has been solved analytically. A combination of a
linearizing method and an analytical iteration technique was used. This combi-
nation of techniques ultimately led to closed-form approximate solutions for
velocity and temperature fields (eqs. (61), (62), and (70)). There are two
major differences between this work and all of the known previous efforts; one
is the wide range of applicability for the aspect ratio (0 < e £ 1), and the
other is the fact that the method of solution has been systematic, with no a
priori assumptions made regarding, for example, the core configurations. This
approach is especially important for even more complicated problems such as the
study of multispecies natural convection where clear experimental and numeri-
cal data are not available for use in theoretical analysis.
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